

1. Determine the domain of definition D of the function f and calculate the limits of f at the boundaries of D.

$$x - 1 \neq 0 \; ; \; x \neq 1$$

$$D =] - \infty; 1[\cup]1; + \infty[$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{x} = \lim_{x \to -\infty} x = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x = +\infty$$

$$\lim_{x \to 1^-} f(x) = \frac{1}{0^-} = -\infty$$

$$\lim_{x \to 1^+} f(x) = \frac{1}{0^+} = +\infty$$
So $x = 1$ is a vertical asymptote

2. Show that the line (d): y = x + 1 is an oblique asymptote and study its relative position with respect to (C).

$$f(x) - y = \frac{x^2}{x - 1} - (x + 1) = \frac{x^2 - x^2 + 1}{x - 1} = \frac{1}{x - 1}$$

$$\lim_{x \to \pm \infty} \frac{1}{x - 1} = \lim_{x \to \pm \infty} \frac{1}{x} = \frac{1}{\pm \infty} = 0 \text{ So (d) is an oblique asymptote at } \pm \infty.$$

Relative position

$$f(x) - y = \frac{1}{x - 1}$$

\boldsymbol{x}		1	
f(x) - y			+
Position	(C) is below (d)		(C) is above (d)

3. Show that the point I(1,2) is a center of symmetry.

$$a = 1 ; b = 2$$
Domain $D =] - \infty; 1[U]1; +\infty[$ is centered at 1
$$f(2a - x) + f(x) = f(2 - x) + f(x) = \frac{(2 - x)^2}{2 - x - 1} + \frac{x^2}{x - 1} = \frac{4 - 4x + x^2}{1 - x} + \frac{x^2}{x - 1}$$

$$= \frac{4 - 4x + x^2}{1 - x} - \frac{x^2}{1 - x} = \frac{4 - 4x + x^2 - x^2}{1 - x} = \frac{4 - 4x}{1 - x} = \frac{4(1 - x)}{1 - x} = 4 = 2(2)$$

So I is a center of symmetry

4. Calculate f'(x) and set up the table of variations of f.

$$f'(x) = \frac{2x(x-1)-1(x^2)}{(x-1)^2}$$
$$= \frac{2x^2-2x-x^2}{(x-1)^2} = \frac{x^2-2x}{(x-1)^2} = \frac{x(x-2)}{(x-1)^2}$$

|f'(x)| + 0

$$f'(x) = 0$$
; $x(x-2) = 0$
 $x = 0$ or $x - 2 = 0$
 $x = 2$

$$f(0) = \frac{0^2}{0-1} = 0$$
$$f(2) = \frac{2^2}{2-1} = 4$$

> Start by the asymptotes:

$$x = 1$$
 vertical line
 $y = x + 1$ Oblique line
For $x = 0$; $y = 1$
For $x = -1$; $y = 0$

5. Plot (C).

> Place the extrema

> Particular points:

It is (0;0)

5. Plot (C).

Start drawing based on the table of variations

x		0		1		2	
f'(x)	+	0	_		_	0	+
f(x)		0			+∞	4	+∞
(D.A	•					

Plot (C).

orthonormal system $(O; \vec{i}; \vec{j})$.

table of variations

Start drawing based on the

5. Plot (C).

> Start drawing based on the table of variations

x		0		1		2	
f'(x)	+	0	_		_	0	+
f(x)		0	∞ V.A		+∞	4	+∞

orthonormal system $(O; \vec{i}; \vec{j})$.

table of variations

Start drawing based on the

V.A.

Plot (C).

5. Plot (C).

Start drawing based on the table of variations

x		0	1		2	
f'(x)	+	0 –		_	0	+
f(x)	∞	0 à		+∞	4	+∞
			V.	A.		

orthonormal system $(O; \vec{i}; \vec{j})$.

table of variations

Start drawing based on the

V.A.

Plot (C).

5. Plot (C).

Start drawing based on the table of variations

x	0	1	2	
f'(x)	+ 0	-	- 0	+
f(x)			+∞ 4	+∞ / O.A.

orthonormal system $(O; \vec{i}; j)$.

